BAB II

TINJAUAN PUSTAKA

A. Penelitian Terdahulu

1. Penelitian oleh (Sandi 2019), Fakultas Ilmu Sosial dan Hukum.

Dengan judul "Analisis Kualitas Air dan Distribusi Limbah Cair Industri Tahu di Sungai Murong Kecamatan Jogoroto Kabupaten Jombang". Penelitian ini untuk mengetahui pengaruh sebaran limbah cair industri tahu terhadap kualitas Air Sungai Murong di Kecamatan Jogoroto Kabupaten Jombang. Penelitian menggunakan metode purposive sampling yaitu mengambil beberapa sampel air sungai berdasarkan kriteria jarak dengan sumber polutan. Pengambilan sampel diambil di 6 titik sungai. Titik pertama diambil 200 meter sebelum pembuangan air limbah, titik selanjuutnya pada jarak 300 meter, 600 meter dan 900 meter sesuad pembuangan air limbah industri tahu dengan parameter COD, BOD, TSS dan pH kemudian akan dibandingkan dengan Baku Mutu Air golongan III Peraturan Pemerintah Nomor 82 Tahun 2001. Richa Diardi Sandi, 2019). Hasil peelitian ini terjadi penurunan kualitas air di Sungai Murong akibat adanya pencemaran limbah cair industrti tahu berdasarkan Baku Mutu Air Sungai golongan III Peraturan Pemerintah Nomor 82 Tahun 2001.

 Penelitian oleh (Sepriani, Abidjulu, dan Kolengan 2016), Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sam Ratulangi Manado, Program Studi Kimia.

Dengan Judul "Pengaruh Limbah Cair Industri Tahu Terhdap Kualitas Air Sungai PAAL 4 Kecamatan Tikala Kota Manado". Penelitian ini untuk menentukan tingkat pencemaran dari pembuangan limbah cair tahu pada air sunga Paal 4 di Tikala Manado dengan Ph, nitrit (NO₂-), nitrat (NO₃-), amonium, TDS, TSS, DO, COD dan BOD. Penelitian ini dilakukan dengan mengambil 5 titik sampel air sungai di Paal 4 Kecamatan Tikala, Manado yaitu titik pertama dan kedua dengan jarak

25 m dan 10 m sebelum pembuangan air limbah, titik ketiga tepat pada saluran pembuangan limbah, selanjutnya titik keempat dan kelima dengan jarak 10 m dan 25 m setelah pembuangan air limbah. Hasil penelitian ini kualitas air sungai PAAL mengalami penurunan pada parameter fisika dan kimia yang disebabkan oleh limbah cair industri tahu.

 Penelitian oleh (Kesuma dan Widyastuti 2013), Universitas Gadjah Mada.

Dengan Judul "Pengaruhh Limbah Industri Tahu Terhadap Kualitas Air Sungai di Kabupaten Klaten". Penelitian ini untuk menganalisis parameter dari limbah cair tahu, kualitas air sungai dan pengaruh limbah cair tahu terhadap air sungai yang digunakan sebagai irigasi. Metode penelitian ini yaitu purposive sampling dengan mengambil sampel air sungai dengan 3 titik yaitu titik pertama 200 m sebelum air sungai terkena limbah cair tahu, titik kedua setelah air sungai bercampur limbah cair tahu dan titik ketiga pada jarak 300 m setelah pipa outlet dengan parameter suhu, Ph, BOD, COD dan TSS. Hasil penelitian ini kualitas limbah cair tahu dengan parameter suhu, pH, BOD, COD dan TSS melebihi baku mutu. Kualitas pada air sungai mengalami penurunan dengan parameter yang melebihi baku mutu dan limbah cair tahu yang ada disungai memiliki pengaruh terhadap kualitas air sebagai irigasi.

Tabel II.1 Penelitian Terdahulu dan Penelitian Sekarang

No.	Nama Peneliti	Judul Penelitian	Tujuan Penelitian	Variabel Penelitian	Jenis dan Desain	Hasil
1.	Richa Diari	Analisis Kualitas	Untuk mengetahui	Mengambil beberapa	Penelitian	Industri tahu terlah
	Sandi	Air dan Distribusi	pengaruh sebaran	sampel air sungai	Deskriptif	mencemari kualitas air
		Limbah Cair	limbah cair industri	berdasarkan kriteria jarak	Kuantitatif	sungai Murong pada titik ke
		Industri Tahu di	tahu terhadap	dengan sumber polutan.		3 dan 4 pada kandungan
		Sungai Murong	kualitas Air Sungai	akan diperiksa di		BOD dan COD mengalami
		Kecamatan	Murong di	laboratorium kandungan		peningkatan sehingga
		Jogoroto	Kecamatan Jogoroto	COD, BOD, TSS dan pH		melebihi baku mutu yaitu
		Kabupaten	Kabupaten	yang kemudian akan		sebesar 247,63 mg/L dan
		Jombang	Jombang.	dibandingkan dengan		417,62 mg/L
				Baku Mutu Air golongan		
				III Peraturan Pemerintah		
				Nomor 82 Tahun 2001.		
2.	Sepriani,	Pengaruh Limbah	Untuk menentukan	Mengambil 5 titik sampel	Penelitian	Terjadi penurunan kualitas
	Jemmy	Cair Industri	tingkat pencemaran	air sungai di Paal 4	Deskriptif	air dengan parameter pH

	Abidjulu,	Tahu Terhdap	dari pembuangan	Kecamatan Tikala,		pada titik ke 3 sebesar 4,95.
	Harry S. J.	Kualitas Air	limbah cair tahu	Manado. Kemudian akan		Parameter Amonia pada
	Kolengan	Sungai PAAL 4	pada air sunga Paal 4	diperiksa jumlah		titik ke 3 sebesar 0,6533
		Kecamatan Tikala	di Tikala Manado	kanungan dengan		mg/L. Parameter TDS pada
		Kota Manado	dengan parameter	parameter yang		titik ke 3 sebesar 3510
			yang digunakan Ph,	digunakan Ph, nitrit		mg/L. Parameter DO pada
			nitrit (NO ₂ -), nitrat	(NO_2^-) , nitrat (NO_3^-) ,		semua titik kecuali pada
			(NO ₃ -), amonium,	amonium, TDS, TSS,		titik ketiga paling rendah
			TDS, TSS, DO,	DO, COD dan BOD.		yaitu 0,83 mg/L. Parameter
			COD dan BOD.			BOD semua titik mengalami
						peningkatan dari 48,6 mg/L
						sampai 371 mg/L.
						Parameter COD semua titik
						mengalami peningkatan
						mulai dari 78 mg/L sampai
						420 mg/L.
3.	Derajatin	Pengaruh Limbah	Untuk menganalisis	Mengambil sampel air	Penelitian	Kualitas pada air Sungai
	Diwani	Industri Tahu	parameter pada	sungai dengan 3 titik	Deskriptif	telah terjadi penurunan
		Terhadap Kualitas	kualitas air dari	yang selanjutnya	Kuantitatif	karena telah terjadi

	Kesuma, M.	Air Sungai di	limbah cair tahu dan	diperiksa jumlah		pencemaran dari limbah
	Widyastuti	Kabupaten Klaten	air sungai yang	kandungan pada		industri tahu. Pencemaran
			disebabkan oleh	parameter BOD, COD,		tejadi dengan adanya
			adannya limbah cair	dan TSS.		kandungan BOD dan COD
			dari industri tahu			terus terjadi peningkatan.
			serta menganalisa			dengan parameter BOD
			pengaruh limbah cair			sebesar 4 mg/L sampai 64
			tahu terhadap air			mg/L. sedangkan pada
			sungai di Sungai			parameter COD sebesar 59
			Klego Desa Leses,			mg/L sampai 200 mg/L dari
			Sungai Panggang			semua sungai.
			Desa Somopuro,			
			Sungai Puluhan			
			Utara Desa Bono,			
			dan di Sungai			
			Macanan Desa			
			Karanganom.			
4.	Sekar Arum	Pelacakan	Mengetahui kualitas	Mengambil 5 titik sampel	Penelitian	Terjadi Peningkatan pada
	Adwityara	Penyebaran	air sungai di Desa	air sungai ngepeh dengan	Deskriptif	Titik kedua pada parameter

Pencemaran	Ngepeh Kecamatan	parameter pH, TSS, BOD	Kualitatif,	pH terjadi penurunan
Limbah Cair	Saradan Kabupaten	dan COD	Metode Cross	sebesar 4, sedangakan
Tahu Oleh	Madiun		Sectional	terjadi peningkatan pada
Industri Tahu				parameter TSS sebesar 35
VIVO di Sungai				mg/l, BOD sebesar 260 mg/l
di Desa Ngepeh				dan COD sebesar 295. Nilai
Kecamatan				kadar pH mengalami
Saradan				penurunan sedangkan
Kabupaten				parameter lainnya memiliki
Madiun				nilai yang tinggi di titik
				kedua sampai titik kelima
				(melebihi baku mutu) yang
				ditetapkan Peraturan
				Pemerintah No. 82 Tahun
				2001.

B. Landasan Teori

1. Sungai

a. Pengertian

Telah disebutkan dalam Peraturan Pemerintah Republik Indonesia Nomor 38 Tahun 2011 Tentang Sungai bahwa sungai adalah suatu tempat penampung atau pengaliran air yang keberadaannya dapat terbentuk secara alami maupun buatan yang pengalirannya terjadi dari hulu sampai muara dengan adanya pembatas sempadan di kanan kirinya.

b. Klasifikasi Baku Mutu Air Sungai

Disebutkan dalam Peraturan Pemerintah No. 82 tahun 2001 tentang Pengelolaan Kualitas Air dan Pengendalian Pencemar Air bahwa baku mutu air adalah batasan kadar atau komponen yang ada di dalam air sungai. Baku mutu tersebut berfungsi sebagai instrumen dan alat ukur agar tidak melebihi baku mutu atau air sungai tetap pada batas yang aman dan terhindar dari terjadinya pencemaran air. Terdapat klasifikasi air sungai yang telah ditetapkan sebagai berikut.

- Kelas Satu, air digunakan sebagai air baku untuk minum atau lainnya yang telah disyaratkan mutu air sama dengan kegunaannya.
- b. Kelas Dua, air digunakan sebagai sarana/ prasarana tempat rekreasi air, budidaya ikan air tawar, peternakan atau pengaliran pada pertanaman.
- c. Kelas Tiga, air digunakan sebagai budidaya ikan air tawar, peternakan dan untuk pengaliran pertanaman atau lainnya.
- d. Kelas Empat, air yang digunakan untuk mengairi daerah pertanaman.

2. Limbah Cair Tahu

a. Pengertian

Dalam pembuatan tahu tentunya akan memerlukan beberapa proses untuk mengolah sebelum akhirnya menjadi tahu. Untuk membuat tahu sendiri membutuhkan bahan baku berupa kedelai. Pada proses produksi pembuatan tahu biasanya akan menghasilkan sisa buangan atau limbah hasil dari kegitan pengolahan. Limbah dari kegiatan dari industri tahu dapat dibagi menjadi dua yaitu limbah padat dan limbah cair.

Limbah padat dapat berupa kerikil, pasir atau kulit kedelai yang dihasilkan pada saat proses awal yaitu pencucian bahan kedelai. Selain itu limbah padat juga berupa gumpalan atau ampas kedelai bewarna putih, limbah ini berasal dari proses penyaringan kedelai. Limbah padat pada umumnya memilki jumlah yang tidak begitu banyak yaitu 0,3% dari bahan kedelai. Jumlah ampas tahu tersebut biasanya berkisar antara 25 – 35%. Untuk limbah padat sampai saat ini pengolahannya masih dapat dimanfaatkan kembali, salah satunya dapat dijadikan sebagai bahan pakan ternak. (Arifin 2012)

Selain limbah padat terdapat limbah cair yang dihasilkan dari pengolahan tahu. Limbah cair dihasilkan dari sisa buangan air yang digunakan untuk mencuci kedelai, dari pencucian alat yang digunakan dalam pengolahan, dan air sisa penyaringan, perendaman perebusan, penggumpalan, dan pencetakkan tahu. Pada air limbah tahu mengandung banyak zat organik dan protein. Maka dari itu, limbah ini perlu melalui pengolahan terlebih dahulu sebelum diuang ke badan air. Karena jika tidak zat – zat yang ada di dalam limbah cair tahu dapat mencemari badan air.

b. Kandungan Limbah Cair Tahu

Limbah cair tahu memiliki kandungan bahan organik yang cukup banyak dan tinggi. Bila limbah tersebut tidak dikelola atau

diolah dengan baik maka dapat mencemari air sungai. Limbah cair jika dibiarkan akan menimbulkan bau busuk dan bewarna keruh. Limbah cair tahu mengandung protein sebesar 40 – 60%, karbohidrat 25 – 50% dan lemak sebesar 10%. Selain itu juga mengandung 0,1% karbohidrat, 0,42% protein, 0,13% lemak, 4,55% Fe (Besi), 1,74% fosfor dan 98,8% air. (Pagoray, Sulistyawati, dan Fitriyani 2021)

Selain itu limbah cair tahu juga mengandung unsur hara N yang dapat berguna bagi pertumbuhan tanaman, dapat bermanfaat untuk bertambahnya tinggi, panjangnya akar dan memperbanyak jumlah daun pada tanaman. Limbah ini juga memiliki kandungan gas dari dekomposisi bahan organik dalam limbah cair tahu berupa oksigen (O₂), hidrogen sulfida (H₂S), amonia (NH₃), karbondioksida (CO₂) dan gas metana (CH₄). Bahan organik pada limbah cair tahu akan diuraikan dengan proses biologi secara aerob maupun anaerob.(Arifin 2012)

c. Karakteristik Limbah Cair Tahu

Karakteristik pada limbah cair tahu biasanya dilihat dari sifat fisika dan kimia. Pada sifat kimia limbah cair tahu memiliki kandungan organik seperti BOD, COD, DO (oksigen terlarut), tingkat keasaman (pH) yang biasanya kurang dari baku mutu yang telah ditetapkan, lemak, protein dan lainnya. Sedangkan pada sifat fisika limbah cair tahu memiliki tingkat kekeruhan, zat padat dan bau tidak sedap dari adanya zat organik. (Arifin 2012)

d. Baku Mutu Limbah Cair Tahu

Limbah cair tahu jika tidak dikelola dengan baik maka dapat mencemari lingkungan terutama jika dialirkan ke badan air. Maka dari itu terdapat parameter yang dapat digunakan sebagai acuan untuk mengetahui apakah limbah cair tersebut sudah memenuhi syarat sesuai dengab baku mutu yang telah ditetapkan. Untuk parameter pada limbah cair tahu sendiri dibagi menjadi dua macam

yaitu parameter kimia dan parameter fisika. Parameter fisika meliputi warna, bau, suhu dan padatan tersuspensi. Sedangkan pada parameter kimia meliputi bahan organik, bahan anorganik maupun gas.

Berikut dapat dilihat tabel baku mutu parameter limbah cair tahu.

Tabel II. 2 Baku Mutu Limbah Industri Tahu

Parameter	Baku Mutu (mg/l)
BOD	150 mg/l
COD	300 mg/l
TSS	100 mg/l
pH	6,0 – 9,0

Sumber: Peraturan Gubernur Jawa Timur Nomor 72 Tahun 2013

Adanya parameter tersebut bertujuan untuk memberikan batasan limbah cair tahu untuk mencapai batas aman sebelum dibuang ke badan air dan tidak mengakibatkan pencemaran air.

e. Pengolahan Limbah Cair Tahu

Limbah cair memiliki kandungan atau bahan – bahan yang dapat mencemari air jika dibuang disungai tanpa melalui pengolahan terlebih dahulu. Pengolahan pad limbah dibutuhkan untuk dapat menurunkan atau menghilangkan kandungan tersebut. Ada beberapa metode pengolahan limbah cair tahuyang dapat digunakan oleh industri tahu. Metode tersebut antara lain metode pengolahan secara fisika, kimia dan biologi. (Arifin 2012)

1) Pengolahan Secara Fisika

Pengolahan ini memisahkan bahan pencemar seperti padatan tersuspensi dari limbah menggunakan metode filtrasi dan sedimentasi atau pengendapan. Dimana metode ini menyaring semua partikel menggunakan sebuah media yang bertujuan untuk menjernihkan dan memisahkan dari limbah cair menggunakan gaya gravitasi. Dengan metode ini biasanya partikel yang tersaring adalah partikel – partikel kasar berupa pasir, lumpur maupun partikel lainnya.

2) Pengolahan Secara Kimia

Metode secara kimia bertujuan untnuk menghilangkan bahan – bahan pencemar yang ada dalam air dengan cara menambahkan beberapa bahan kimia. Pada metode ini dapat digolongakan menjadi dua proses yang biasanya dilakukan untuk menghilangkan bahan – bahan pencemar. Beberapa proses tersebut diantara proses koagulasi – flokulasi dan proses netralisasi.

Pada proses koagulasi – flokulasi biasanya banyak menyerap ion – ion yang bermuatan negatif di dalam air limbah. Proses koagulasi – flokulasi adalah proses terjadinya destabilisasi atau bahan yang menyebabkan tidak stabilnya partikel koloid, untuk itu perlu ditambahkan dengan ion – ion yang memiliki muatan berlawanan atau disebut dengan koagulan pada koloid. Dengan penambahan tersebut maka koloid akan menjadi netral yang dapat menyatu dan menjadi mikroflok (flok). Mikroflok tersebut akan terbentuk dengan pengadukan secara lambat dan akan menghasilkan makroflok (flokulasi), sehingga dapat dilakukannya proses filtrasi dan pengendapan.

3) Pengolahan Secara Biologi

Pengolahan secara biologis biasanya jarang diterapkan untuk pelaku industri terutama pada industri tahu, karena masih kurangnya pengetahuan pengolahan secara biologis. Pada metode ini biasanya membutuhkan mikroorganisme untuk menguraikan bahan – bahan tercemar dalam air limbah. Mikroorganisme tersebut dapat berupa bakteri, protozoa maupun algae. Selain itu dapat juga memanfaatkan lumpur

aktif untuk menurunkan zat oragnik yang ada di dalam limbah cair tahu. Pemanfaatan lumpur aktif cukup berpengaruh terhadap penurunan tersebut seperti pada kandungan BOD sebesar 95%, nitrogen 67%, dan fosfor sebanyak 57%. (Arifin 2012)

3. pH (Derajat Keasaman)

a. Pengertian

pH atau derajat keasaman adalah tingkat atau suatu ukuran yang dapat menentukan kondisi air tersebut asam atau basa. Tin gkat pH dalam air biasanya skala bekisar antara 0 sampai 14. Untuk skala pH 0 – 6,5 memiliki sifat asam, pada skala 7 menunjukkan bahwa derajat keasaman dalam air netral, sedangkan pada skala 7,5 – 14 akan menunjukkan bahwa air besifat basa. Penentuan tingkat pH sangat penting untuk mengetahui bahwa perairan terebut baik atau buruk. Baik buruknya pH air juga dapat mempengaruhi kehidupan biota air seperti tumbuh – tumbuhan dan ikan – ikan. Besar atau kecilnya pH yang terkandung di dalam air sungai juga tergantung seberapa besar atau banyaknya jumlah polutan atau limbah cair yang ikut larut di dalam air.

b. Penyebab Terjadinya Perubahan pH di Sungai

1) Proses Dekomposisi Bahan Organik

Dekomposisi bahan organik atau dapat disebut dengan proses pembusukan bahan organik yang terjadi di dalam air sungai dapat mempengaruhi nilai pH. Hal ini terjadi karena tedapat kandungan organik yang didalamnya memiliki unsur karbon. Pada saat proses dekomposisi berlangsung, jumlah karbon dioksida yang dilepaskan ke dalam air banyak. Sehingga pada saat karbon dioksida masuk ke dalam air sungai maka akan menyebabkan kadar pH berubah. pH air sungai bisa

menjadi asam atau basa. Bahan organik sendiri bisa berasal dari buangan limbah cair industri. (Iv 2009)

2) Suhu

Suhu air sungai akan naik apabila air mendapatkan panas dari sinar matahari. Pada saat terjadi kenaikan suhu, larutan karbon dioksida mengalami penurunan sehingga menyebabkan kadar pH naik dan air sungai bersifat basa. Sebaliknya, jika suhu air sungai menurun maka larutan karbon dioksida mengalami peningkatan lebih tinggi. Suhu yang menurun artinya air sungai mulai dingin dan mengakibatkan kadar pH pada air sungai akan menurun dan bersifat asam. (Iv 2009)

3) Konsentrasi Karbon Dioksida (CO2) di Dalam Air

Karbon dioksida (CO₂)di dalam air dapat mempengaruhi peningkatan pada ion hidrogen yang dapat menyebabkan kadar pH mengalami penurunan. Karbon dioksida sendiri berasal dari atmosfer atau bisa juga dari udara sekitar air sungai yang terkena polutan. Selain itu karbon dioksida dapat berasal dari terjadinya proses respirasi pada tumbuhan di malam hari, karena pada proses tersebut banyak jumlah dari karbon dioksida yang di lepaskan di dalam air sungaiyang mengakibatkan kadar pH air sungai akan menurun. Begitupun sebaliknya, pada siang hari tumbuhan di dalam air mengalami proses fotosintesis dimana proses tersebut tumbuhan akan mengeluarkan oksigen. Dengan keluarnya oksigen oleh tumbuhan yang berfotosintesis maka pH air sungai akan naik. (Iv 2009)

b. Dampak Perubahan pH di Sungai

pH air sangat berpengaruh untuk mengetahui kualitas air sungai terutama untuk menentukan apakah air sungai bersifat asam atau basa dan aman untuk kehidupan biota air di dalamnya. Pada

kadar pH atau tingkat keasaman yang tinggi (alkalin) di dalam air akan menyebabkan peningkatan kadar amonia yang tinggi dan dapat mempengaruhi pada tingkat toksisitas senyawa kimia. (Djoharam, Riani, dan Yani 2018)

4. TSS (Total Suspended Solid)

a. Pengertian

Total Suspended Solid adalah suatu padatan yang mengendap karena adanya proses penyaringan atau residu dengan ukuran partikel sebesar 2 µm atau bisa saja lebih besar dari ukuran partikel koloid (Muhammad Ridwan Harahap dkk, 2020). Disebutkan bahwa endapan yang tertinggal tersebut berupa lumpur, pasir, kerikil, jamur dan logam oksidasi. TSS sendiri juga berhubungan dengan kekeruhan dimana jika tingkat kandungan TSS dalam air tinggi, maka tingkat kekeruhan dalam air juga tinggi. (S. Kel 2017)

b. Penyebab TSS Tinggi di Sungai

Tinggi kadar TSS disebabkan karena banyaknya jumlah bahan organik yang larut didalam air oleh limbah cair. TSS yang mengendap di dalam air akan mengganggu jalannya aliran air sungai yang akan menyebabkan terjadinya pendangkalan pada sungai. (Linda 2004). Selain itu kadar TSS yang tinggi juga dapat terjadi karena debit aliran air sungai yang digunakan untuk membuang limbah cair.

c. Dampak TSS Tinggi di Sungai

Tingkat TSS yang tinggi di dalam air sungai dapat menghambat terjadinya fotosista pada tumbuhan di dalam air. Hal ini disebabkan karena TSS menyebakan kekeruhan pada air, dimana sinar matahari akan sulit untuk masuk atau menembus ke dalam air. Akibatnya oksigen terhambat masuk ke dalam air sehingga jumlah oksigen akan berkurang dan menyebabkan kehidupan biota di dalam air sungai seperti ikan – ikan akan mati

dan menyebabkan air sungai menjadi tambah keruh dan sulit ditembus oleh sinar matahari. (Yuliyanti 2019)

d. Metode Penurunana TSS di Sungai

Penuruna kadar TSS yang tinggi dapat dilakukan secara alamiah dengan metode self purification. TSS adalah padatan yang mengendap. Padatan tersebut menyebabkan air sungai memiliki warna yang keruh. Kadar TSS tinggi yang berasal dari limbah cair kemudian di buang ke badan air akan mengalami proses pengendapan padatan. Kadar TSS secara otomatis akan terbawa di sepanjang aliran air sungai dan padatan tersebut akan mengendap ke dasar air sungai. Semakin jauh aliran air sungai membawa endapan tersebut maka air sungai akan menjadi jernih. Selain air sungai menjadi jernih maka sungai akan menjadi dangkal, sehingga kandungan TSS akan semakin berkurang di dalam air.

5. BOD (Biological Oxygen Demand)

a. Pengertian

Parameter BOD biasanya digunakan untuk menentukan seberapa besar tingkat pencemaran yang ada di dalam air. Parameter BOD adalah jumlah oksigen yang dibutuhkan oleh mikroorganisme dalam air untuk mendegradasi dan menguraiakan zat atau bahan organik yang ada di dalam air. Oksigen didalam air sangat dibutuhkan oleh mikroorganisme karena dapat membantu untuk memecah bahan organik terutama pada air limbah (Yulia Khairina Ashar, 2020). Adanya jumlah oksigen yang banyak di dalam air dapat disimpulkan bahwa banyak bahan organik dari limbah cair yang ada di dalam air. (Arifin 2012). BOD juga dapat diartikan sebagai suatu gambaran banyaknya zat organik yang mudah untuk di uraikan di dalam air. (Djoharam et al. 2018)

b. Penyebab BOD Tinggi di Sungai

Kadar BOD di sungai yang tinggi dapat disebabkan karena adanya bahan organik di dalam air dari buangan limbah cair yang berasal dari industri maupun polutan lainnya yang berada di dalam air sungai. Bahan organik ini dapat berupa protein, lemak, amonia ataupun minyak dan lainnya. Bahan organik yang tinggi tentunya akan membutuhkan oksigen yang banyak. Karena dengan banyaknya jumlah bahan organik maka kebutuhan oksigen dalam menguraikan bahan pencemar akan dapat berkurang. Artinya kadar BOD tinggi karena kurangnya oksigen di dalam air.

c. Dampak BOD Tinggi di Sungai

Kadar BOD yang tinggi artinya jumlah oksigen di dalam air berkurang atau rendah. Jika jumlah oksigen yang ada dalam air kurang atau rendah maka proses penguraian oleh bakteri pada bahan organik yang dilakukan oleh mikroorganisme akan menurun. Apabila bahan organik sudah mencemari perairan maka bakteri — bakteri akan mudah mengahabiskan jumlah oksigen dalam air. (Arifin 2012). Jika oksigen di dalam air sungai jumlahnya menurun, maka bakteri aerobik yang bertugas dalam penguraian bahan organik akan mati. Pada saat itu juga akan terjadi proses pemecahan bahan organik di dalam air sungai yang dilakukan oleh bakteri anaerobik, sehingga proses tersebut akan menyebabkan timbulnya bau yang tidak sedap (menyengat). (Ashar 2020)

d. Metode Penurunan BOD Tinggi di Sungai

Pada setiap jarak aliran sungai, kadar BOD akan mengalami penurunan secara otomastis. Proses ini dapat disebut dengan self purification. Proses penurunan terebut disebut dengan proses dioksigenasi, yaitu menurunnya jumlah oksigen yang dibutuhkan oleh mikroorganisme di dalam air sungai yang digunakan untuk menguraikan kandungan organik. Artinya jika jarak tempuh aliran air sungai semakin jauh maka kandungan organik akan mengalami penurunan secara alami diikuti dengan penurunan mikroorganisme di dalam air sungai (Fithri, Oginawati, dan Santoso 2011)

6. COD (Chemical Oxygen Demand)

a. Pengertian

Parameter COD adalah salah satu yang termasuk dalam penentuan tingkat pencemaran pada air. Sedikit berbeda dari BOD, COD adalah jumlah total atau jumlah keseluruhan oksigen di dalam air yang untuk mengoksidasi dengan melalui reaksi kimia. (Ridwan Harahap, Dhea Amanda, dan Hakim Matondang 2020). Didalam air, bahan organik akan mengalami proses oksidasi oleh reaksi kimia seperti Kalium bikchromat (K₂Cr₂O₇) yang akan menjadi suatu gas CO₂ dan H₂O bersama ion chrom. Kalium bikchromat tersebut akan dijadikan sebagai sumber oksigen. Sebelum terjadi proses oksidasi oleh reaksi kimia, air yang telah tercemar oleh bahan organik akan memiliki warna kuning. Sedangkan setelah proses oksidasi terjadi air yang tercemar akan berubah warna menjadi hijau. Jika proses oksidasi oleh Kalium bikchromat berlangsung terus menerus maka akan semakin banyak jumlah oksigen yang dibutuhkan. (Atima 2015)

b. Penyebab COD Tinggi di Sungai

Kandungan COD tinggi disebabkan karena adaya faktor lingkungan yang dapat mempengaruhi banyaknya jumlah bahan organik dari buangan limbah cair atau sumber polutan lainnya yang tinggi dan larut di dalam air sungai dan mengalami proses dioksidasi melalui proses kimiawi. Dan di dalam proses oksidasi tersebut membutuhkan jumlah oksigen yang banyak dan dibantu dengan reaksi – reaksi kimia atau sesuai dengan bahan pencemar yang masuk ke dalam air sungai.

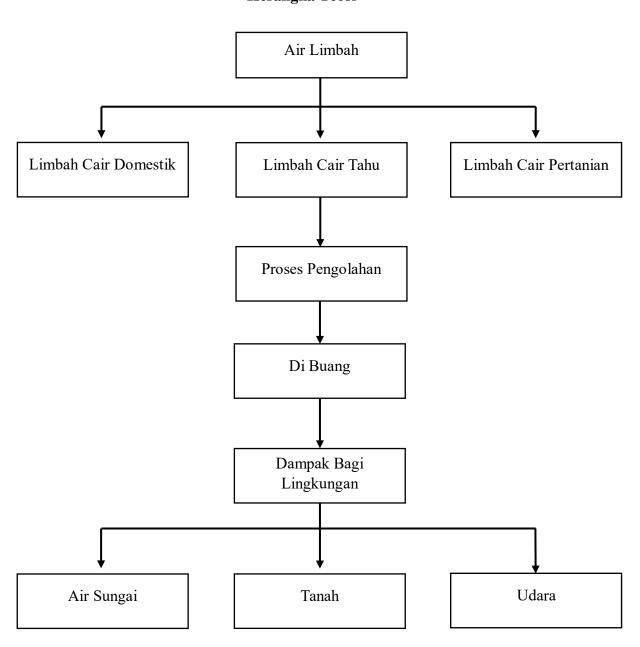
c. Dampak COD Tinggi di Sungai

Kadar COD yang tinggi memilliki dampak yaitu dampak terhadap kesehatan manusia dan terhadap lingkungan.

1. Dampak Terhadap Kesehatan

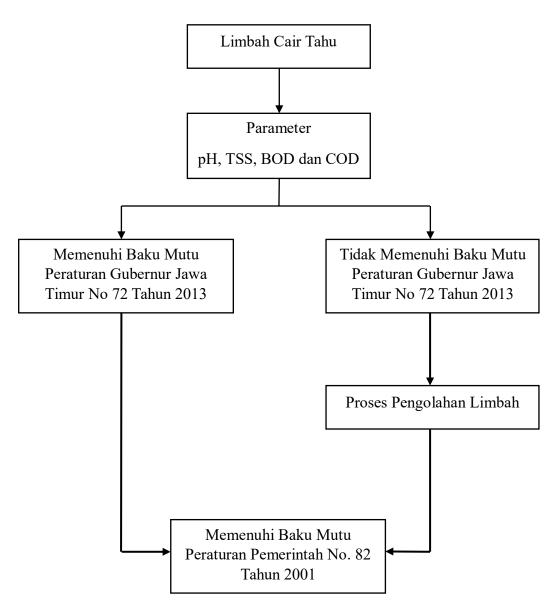
Adanya tingkat kadar COD yang tinggi dapat disimpulkan bahwa di dalam air tersebut banyak mengandung bahan pencemar. Bahan tersebut biasanya akan diuraikan oleh mikroorganisme yang jumlahnya cukup banyak. Mikroorganisme tersebut ada yang bersifat patogen maupun tidak patogen, sedangakan pada mikroorganisme patogen dapat menjadi sarang tempat berkembangbiaknya berbagai macam penyakit yang dapat menyerang pada kesehatan manusia.

2. Dampak Terhadap Lingkungan


Pada lingkungan, tingkat kadar COD yang tinggi akan membutuhkan jumlah oksigen yang banyak. Maka jika kebutuhan oksigen tidak mencukupi untuk membantu proses oksidasi di dalam air, maka akan dapat berakibat pada kehidupan biota maupun tumbuhan dalam air akan terancam dan mati.

d. Metode Penurunan COD di Sungai

Penurunan kadar COD di sungai dapat terjadi secara alamiah atau dapat disebut dengan self purification dengan kemampuan badan air untuk menurunkannya. COD adalah jumlah oksigen yang digunakan untuk mengoksidasi menggunakan reaksi kimia. Maka jika semakin jauh jarak aliran air sungai mengalir maka proses oksidasi bahan organik dari buangan limbah cair di dalam air akan berkurang atau teroksidasi setiap waktu. Proses penurunan ini dapat disebut dengan proses deoksigenasi.


C. Kerangka Teori

Gambar 2.1 Kerangka Teori

D. Kerangka Konsep

Gambar 2.2 Kerangka Konsep

