
 
 

 

Journal of critical reviews                                                                                                                                          879 

 

Journal of Critical Reviews 

ISSN- 2394-5125            Vol 7, Issue 12, 2020 

FEATURE EXTRACTION AND CLASSIFIER IN THE DEVELOPMENT OF 
EXOSKELETON BASED ON EMG SIGNAL CONTROL: A REVIEW 

 
1Triwiyanto Triwiyanto, 2I Dewa Gede Hari Wisana, 3Muhammad Ridha Mak'ruf 

 
Department of Electromedical Engineering, Poltekkes Kemenkes Surabaya, Indonesia 

Corresponding Email: triwi@poltekkesdepkes-sby.ac.id; 
 

Received: 18.03.2020    Revised: 20.04.2020            Accepted: 21.05.2020 

Abstract  
Exoskeleton has been widely developed for the purpose of assistive and rehabilitation. This study's objective is to evaluate 
exoskeleton design based on EMG signal. EMG signals can provide an overview of activity in muscles, moreover the limbs motion can 
be represented by EMG signals through the activity. Some researchers have developed an exoskeleton by utilizing the control process 
through EMG signals. The selection of the right feature extraction determines the success of the classifier. Therefore, in this study, the 
feature extraction used in exoskeleton development research is feature extraction in the time domain (TD) MAV, RMS, IEMG, WL, SSC, 
and ZC. Furthermore, the classifier often used to predict the motion of the exoskeleton is an artificial neural network based on 
multilayer perceptron with backpropagation, neural network based on fuzzy, and support vector machines, because it has better 
accuracy. Some exoskeleton development for future research is discussed at the end, which includes, control system, safety, and 
compensation. 
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INTRODUCTION 
Increasing the number of elderly people will be followed by 
various problems, one of the problems faced is the weakening 
of the body limb function and some degenerative diseases. In 
order this community can carry out their social activities 
normally, it is necessary to have a device that can help to carry 
out these activities. Additionally, stroke is a disease that is the 
world's number-three cause of death, after a stroke, 56% of 
patients will experience paralysis either total paralysis or 
partial paralysis. In order the muscle does not decrease in 
muscle mass (atrophy), post-stroke patients must routinely 
undergo a series of therapies to restore limb function.  
An exoskeleton is a metal structure mounted on the outside of 
an extremity that has experienced a decrease or malfunction, 
which aims to strengthen, increase endurance for the user and 
rehabilitate. Exoskeleton have been developed for many 
purposes for instance: prosthetic devices [1,16,25,31,32,43-
46], assistive [2,3,6-9,17,19-21,39-42], and rehabilitation 
[4,5,10-15,18,37]. Assistive exoskeleton aims to help human 
body limb in motion which decreased the function. An assistive 
device is mounted in the human body, upper or lower limb. 
Additionally, a rehabilitative exoskeleton aims to help therapist 
and medical doctor to restore the human limb function which 
caused by disturbance after a post stroke or post surgery. 
Several researchers have developed Exoskeleton using several 
methods for detecting motion, including force sensors, motion 
sensors and EMG electrodes. EMG signals are chosen as controls 
in the exoskeleton because EMG signals can directly describe 
the activities that occur in members of body parts.  
This paper aims to provide an explanation the scope of the 
exoskeleton based on EMG signal control in terms of the process 
of data acquisition, feature extraction and classifier. At the end, 
this paper will describe some applications of exoskeleton and 
future development of exoskeleton. This paper is written in 

several sections: the process of EMG signal acquisition, 
electrode layout, bio-amplifier and sampling frequency will be 
discussed in Section 2. Some feature extraction will be 
addressed in Section 3 to evaluate the characteristics of the 
EMG signals. In order to recognize the EMG signals then a 
classifier is required, this section will be discussed in Section 4. 
Section 5 discusses potential applications and possibilities for 
future development. Section 6 presents conclusions and future 
research. 
 
EMG DATA ACQUISITION 
EMG signal is a bio-electric signal that is generated by muscles 
during contractions, contractions will appear when the body 
limb do an activity. EMG signal is a signal that has a random and 
stochastic form that has frequency varies from 0 to 500 Hz, with 
dominant energy at frequencies between 50 and 150 Hz [2]. 
EMG has an amplitude of between 10 uV and 10 mV [2]. It is 
divided into invasive and non-invasive approaches, depending 
on the mechanism of the EMG signal recording. Invasive is done 
by using a needle electrode, which is inserted into the part of 
the muscle, while the noninvasive method is done by using 
surface electrodes, Which is placed on top of the muscle's skin 
to be examined. Surface electrodes can use disposable Ag (AgCl) 
electrodes commonly used in ECG and EEG signal recording. 
The latter method is more widely used in the development of 
exoskeleton based on EMG signal control, because it can be 
done by non-medical personnel or engineer. This paper will 
address the noninvasive use of EMG signals as a control 
mechanism. 
Basic configuration, an exoskeleton based on EMG signal 
control is shown in Figure 1. This diagram block shows that the 
system is comprised of sensor, bio-amplifier, A/D converter, 
microcomputer system, feature extraction, classifier, driver 
motor, and motor.  
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Figure 1. Exoskeleton based on EMG control 
 

Electrode location 
The electrode location is determined based on the muscle 
portion to be registered. Electrodes can be bipolar or 
monopolar [2]. The location and number of the electrode leads 
depends on the degree of freedom, the part of the body to be 
measured and the limb motion. Tang [3] placed three electrodes 
in three groups of muscles (anconeus, triceps brachii, biceps 
brachii, and brachioradialis) to detect flexion and extension 
motion. Lenzy [4], Song [5], Kyrylova [6] and Lalitharatne [7] 
built an exoskeleton on the upper limb by inserting the 
electrodes into the brachii biceps and brachii triceps muscles. It 
takes many muscles to reflect the motion in the development of 
an exoskeleton with greater degrees of freedom, as Rosen et. al 
did. [8]. They developed an exoskeleton with 2 DOF that can 
detect flexion, extension, pronation and supination arm 
movements with leads at the location of brachialis, biceps 
brachii, brachoradialis, and triceps Brachii. Kiguchi suggested a 
3-DOF exoskeleton using biceps (lateral and medial parts), 
triceps (lateral and medial parts), deltoids (anterior and 
posterior parts), pectoral major (clavicular parts), and teres [9]. 
W-EXOS upper limb exoskeleton developed by Gopura detects 
wrist in 3 DOF movements with leads location at supinator 
point (SP), extensor carpi radialis brevis (ECRB), extensor carpi 
ulnaris (ECU), flexor carpi radialis (FCR), flexor carpi ulnaris 
(ECRB), extensor carpi ulnaris (ECU), flexor carpi radialis 
(FCR), flexor carpi ulnaris (SPR) FCU) and pronator teres 
(PT)[10].  Exoskeleton developed by Artemiadis [11], and 
Loconsole [12] detect the shoulder and elbow motion through 
deltoid (anterior), deltoid (posterior), deltoid (middle), 
pectoralis major, biceps brachii, brachioradialis, triceps brachii 
muscles.  

 
Bio-amplifier 
EMG signals have a small amplitude with a range of 0.01 mV to 
10 mV [2], in order this signal can be processed by a computer 
system or microcontroller, it requires a pre amplifier to 
strengthen the signal. Bio-amplifier generally consists of 4 
parts: preamplifier, bandpass filter, notch filter and summing 
amplifier. Preamplifier is the main part of the bio-amplifier 
circuit, which serves to strengthen the EMG signal and reduce 

common mode noise, if there are two differential inputs from 
the preamp. Bandpass filter functions to pass EMG signals 
according to the spectrum characteristics of EMG signals that 
reach frequencies from 0 to 500 Hz [2]. The noise generated by 
the power line is the biggest noise that interfere the bio-
amplifier circuit, therefore the notch filter 50 Hz circuit is a 
solution to reduce the noise. An EMG signal is an oscillating 
signal resembling the form of an ac signal, so that it can be 
processed by the ADC then a summing amplifier is needed to 
increase the signal level to the direct current (DC) form. Several 
companies have made bio-amplifiers for the purposes of EMG 
signal data acquisition, completed with several channels. Bio-
amplifier can also be made with custom as desired, generally 
using the AD620 or INA121 instrumentation amplifier.  
Research conducted by Fleischer used electrodes with built-in 
amplifiers (Delsys, Inc. Boston, USA) [13], With a 1000 V / V 
gain and a 20 and 450 Hz bandpass filter. Loconsole [12] using 
g.USBAmp Amplifier amplifier for data acquisition which 
collected five channel of EMG signal. Rosen used an EMG 
amplifier (BIOPAC-EMG100A) with a gain of 2000-5000 V / V, 
depending on the subject to be measured. The measurements of 
EMG signal was located at the biceps and triceps points [8]. To 
strengthen the EMG signal, Lalitharatne uses an amplifier 
[MEG-6108, Nihon Koden Co.] [14] in the development of 
exoskeleton based on EMG signal control. 
Several researchers used a home made bio-amplifier to process 
EMG signals, Ramos designed an INA126P instrumentation 
amplifier with a gain of 805 V / V and a 16-bit analog input card 
data acquisition of NI 9205 [15]. The embedded device 
implemented in artificial leg by Lin used the instrumentation 
amplifier AD620, which processes EMG signals in the frequency 
range of 10-500 Hz, with a maximum gain of 100,000 V / V in 
accordance with the EMG signal input range of around 50uV-10 
mV, to achieve 0- 5V [16]. The MC68HC11A8 microcontroller 
based prothetic system built by Patel used a differential 
amplifier with a gain of 20,000 V / V. Additionally, 10-3000 Hz 
bandpass filter was applied on the EMG signals which collected 
from bicep, triceps, quadratus pronator, and supinator muscles 
[17]. An aided ARM robot training developed by Song used a 
custom-made bio-amplifier that uses instrumentation 
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amplifiers (INA126, Texas Instruments, Dallas, TX) with 1000 V 
/ V gain and 10-400 Hz bandpass filter [18]. 
 
Frequency sampling 
In EMG signals recording which using an analog to digital 
converter, frequency sampling must meet Nyquist rules, which 
is a minimum of two time of maximum frequency. In the data 
acquisition, the sampling frequency is done on the 
microcontroller or computer system using the timer function. 
Frequency sampling is set based on the highest frequency of the 
measured EMG signal. Gopura [19] applied a frequency 
sampling of 2 kHz to record  EMG signal in sixteen lead. On a PCI 
6036E DAQ (data acquisition) card, National Instruments, 
Austin, TX, Song applied a 1000 Hz frequency sampling 
connected to a device for EMG signal recording [18]. Kyrylova 
[6] used a frequency sampling of 1000 Hz based on 
Biosignalsplux (Plux) to measure the EMG signal on biceps dan 
triceps. Lalitharatne [14] used a 2000 Hz sampling frequency to 
collect the sinyal EMG for the elbow dan shoulder angle 

measurement. Andreasen [20] used a frequency sampling of 
1000 Hz to measure the EMG signal on biceps. 

 
FEATURE EXTRACTION 
Due to a large amount of data collection EMG signals can not be 
analyzed directly for classification purposes in the TD series. A 
large number of data representing the EMG signal requires a 
feature extraction process. The feature extraction process that 
is often developed for the purposes of EMG signal analysis is in 
the TD, frequency and wavelet (time-frequency) domains.  

 
TD Features 
Feature extraction in the TD has advantages in terms of time-
consuming data processing and simple equations. Therefore, 
some studies on exoskeleton preferred to use TD feature 
extraction. The extraction method for the function is essentially 
shown in Figure 2. The extraction process sequentially 
comprises the EMG signal raw, the windowing technique 
(adjacent or overlap) [21] [22], and the EMG feature (time, 
frequency or time-frequency) [23][24]. 
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Figure 2. Feature extraction process 

 
Several features extraction in the TD that are often used in 
exoskeleton research are as follows. Mean absolute value 
(MAV) is a method used for the extraction of EMG signals. In the 
development of exoskeletons, Kiguchi [9], Andreasen [20]  and 
Loconsole [12] used MAV as the classifier data. The MAV 
equation is shown as follow (1): 
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Root mean square (RMS) is one of the features used very 
frequently in many advancements of exoskeletons. Some 
research on exoskeleton uses this feature for signal extraction 
EMG [3], [25], [10], [7], [26], [27], [28], [1]. With the following 
mathematical equation, this feature is identical to the standard 
deviation system (2).  
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Integrated EMG reflects the total number of EMG signals in 
some windows. This feature is usually used to detect whether 
an EMG signal is in a contraction state. Some exoskeleton 
studies use this feature for the extraction of EMG signals [4], 
[28]. Integrated EMG is expressed in mathematical equations as 
follows (3): 
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For calculating the complexity of EMG signals, waveform length 
(WL) is used. WL is the accumulated length of EMG signals in 
the measured segments. Some exoskeleton researchers use WL  
 

as an extraction feature [8], [25], [29].  Ding uses the WL feature 
to find out the elbow joint movement [30]. Liu uses this feature 
in the development of multifunctional prostheses [31]. The WL 
equation is shown in following equation (4): 
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Sign Slope Change (SSC) is a feature frequently used to get EMG 
signal frequency information. SSC indicates the number of 
slopes in sign form. The threshold is used for the noise 
reduction behind the EMG signal. Some studies of exoskeletons 
use this method to obtain the EMG features [32], [1] (5). 
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               (5) 
Zero Crossing (ZC) is a method for viewing information on the 
signal frequency without using the transformation step. ZC is 
determined according to the number of signals that cross the 
zero point. When ZC feature was applied, the noise behind the 
EMG signal does not count. Additionally, a threshold is needed 
as a minimum amplitude limit. Chan uses the ZC function as one 
of the features in the Fuzzy rule, in the creation of protheses [1]. 
The mathematical equation for the ZC feature is as follows (6): 
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where 𝑥𝑖  is the EMG signal on the-i, N assign the length of the 
EMG signal and threshold is to limit the amplitudo level of signal.  
 
Frequency Domain 
Frequency domain analysis essentially uses the Fast Fourier 
Transform method [33][34], That converts the TD signal to the 
frequency domain, so that the EMG signal spectrum band will 
be known to be processed. The EMG signal analysis, also used 
for the assessment of isometric fatigue, is a frequency domain 
analysis. The frequency domain characteristics often used are 
mean frequency (MNF), mean power frequency (MPF) and 
median frequency (MDF). The EMG signal spectrum will 
undergo a change in isometric fatigue determination, with the 
MDF location decreasing. In the study of exoskeleton based on 
frequency domain, it is almost no one uses this domain, because 
it requires a process of transformation from the TD to 
frequency, so it is less precise when used for real time control 
purposes. 

MDF is a median frequency where the EMG power 
spectrum is split into two regions of equal amplitude. It is 
divided into two regions due to being half the total power. As 
explained below, it is measured in two stages: First, the signal 
strength in the entire spectrum is summed up, and divided by 
two. A frequency at which combined intensity (i.e. all intense) 
is selected in the second stage. The MDF equation is shown in 
following equation (7): 
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where, Pj shows the EMG power range at frequencies j and M 
shows the frequency length. 
The MNF value is the product of spectrum frequency and 
amplitude and is equal to the spectrum sum of all these 
products as shown in equation (8). This feature is written as 
follow (8): 
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Where fj describes the EMG power spectrum frequency value at 
frequency j, Pj indicates the EMG power spectrum at frequency 
j and the frequency spectrum length M. 
MNP is an EMG frequency spectrum mean frequency. It is 
definable as follows (9): 
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  (9) 
Where, Pj shows the frequency length (M) of the EMG power 
spectrum at frequencies j. 
Time-Frequency Domain 
The Fast Fourier Transform (FFT) method decompose only 
signals in the TD into frequency components, but this FFT 
method cannot determine the frequency location at a particular 
time. One way to solve this is to use the wavelet method. 
Wavelet method is widely used for the purposes of EMG signal 
analysis to determine the position of the motion and fatigue 
state of the muscles [23][35] but is not used for the exoskeleton 
control process. The material related to time-frequency domain 
can be obtain in some references. 
 
CLASSIFIER 
The output of the EMG feature was not able to define the EMG 
signal pattern following its motion; therefore, a classification 
process based on the input of the EMG feature is required. 
Additionally, some parameters that are often encountered 
during the classification process related to the characteristics of 
the EMG signal are, electrode position, sweat and fatigue. These 
parameters can increase the classification error, so that those 
issues must be taken into account in future work. Some 
exoskeleton studies use modeling with pattern recognition in 
the classifier to estimate the joint angle of the exoskeleton [3] 
[12] [36] [27]. The development of exoskeleton by using 
modeling based on classifier has weaknesses in terms of 
complexity in the learning process and considerable time 
consumption. Some other researchers who develop an 
exoskeleton, without using a classifier, are using the Hill Based 
method [7,26,41] and based on the 2nd order low pass filter 
EMG signal model [4]. Generally, a standard machine learning 
was shown in Figure 3 which consisted of EMG features, 
machine learning, output, and decoder.  
 
Artificial Neural Network 
Classifier often used to recognize exoskeleton motion patterns 
is the MLP artificial neural network (ANN) using the 
backpropagation method in learning process. Tang [3] uses a 
back propagation neural network classifier, with 4 input nodes, 
the hidden nodes are trial and error with consideration that 
they are not too big and not too small because it will affect the 
error of the classifier and the speed of the learning process. The 
ANN performance in modeling the EMG signal to the 
exoskeleton angle obtained a high correlation value (R2) of 0.87. 
The sigmoid transfer function that can be used for ANN learning 
is as follows: 
 

𝑦 = 𝑓(∑ 𝑤𝑖𝑥𝑖) =
1

1+ 𝑒−(∑ 𝑤𝑖𝑥𝑖) 

    
  (7) 

 
where 𝑦 indicates the output, 𝑥𝑖 shows the input, 𝑤𝑖 defines the 
weight factor for the input, hidden and output layer, e is the 
exponential function dan f() is sigmoid transfer function. 
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Figure 3. Standar machine learning procedures 

 
Lonconsole [12] built the Time Delay ANN to predict shoulder 
and elbow joint angles on the exoskeleton for rehabilitation. 
The results of the evaluation of the application of ANN time 
delay obtained RMSE performance value = 1.19. Lee [36]used 
ANN time delay to predict knee joint in identifying seated to 
standing movements, with an RMSE value = 0.02234. ANN-
based radials are one of the ANN methods in the learning 
process on the network using Gaussian equations. Wang [27] 
used radial NN basis to predict elbow joint, with the best 
performance obtained RMSE = 0.063. Several researchers 
developed ANN to predict joints in the upper limb based on 
EMG signal based on various TD feature [27], [28], [30-39]. 
 
Fuzzy 
Fuzzy logic is a method that used for the purposes of classifying 
EMG signals into several classes. Furthermore, fuzzy logic can 
also be used for control of the exoskeleton. Research conducted 
by Taslim, a fuzzy controller was built to detect the movements 
from sitting to standing in the lower limb knee [38]. Gopura 
developed an exoskeleton with three DOF motion through EMG 
signals with classification using fuzzy rule controller [19]. 
 
Neuro Fuzzy 
Neuro Fuzzy (NF) is a hybrid of neural networks and fuzzy logic, 
so it is expected that with this algorithm a system that has the 
ability to learn like humans and has the ability to make logical 
decisions. Neuro fuzzy algorithm is also widely applied to the 
exoskeleton by using the extraction of EMG signal features as 
input. Using the Neuro Fuzzy algorithm, Kiguchi developed the 
upper limb exoskeleton with 4 DOF motions, 3 DOF on the 
shoulders and 1 DOF on the elbow [9]. Upper limb human assist 
developed by Gopura is used to control 3 DOF movements 
based on neuro fuzzy control [10]. Neuro fuzzy algorithm, in 
addition to the control needs of the exoskeleton, can also be 
modified in the network weights so that it can be used as a 
compensator for other parameters, as developed by 
Lalitharatne [39]. When a muscle fatigue occurs, the EMG signal 
will change both in amplitude and frequency. Additionally, the 
median frequency will be shift to the lower frequency. This 
phenomenon can be used to compensate for the neuro fuzzy 
weights during the control process. 
 
SVM 
Support Vector Machines (SVM) are techniques for 
classification that optimize margins between classes. Khokhar 
[25] uses the SVM method to recognize 13 classes of movement 
on the wrist exoskeleton, with the highest accuracy of 99.47%. 
SVM effectiveness testing was also carried out by Yoshikawa 
[40] for the prediction of joint angles on the robot hand, with 
the highest accuracy of 95.7%. Several other researchers  [43-
46] used the SVM method for the classification process of 
movement. 
 
POTENSIAL APPLICATION 
Studies related to the exoskeleton have been developing in the 
past 15 years, along with the needs in the community. Various 
exoskeleton models have been developed, starting from the 

simplest exoskeleton model with an ON-OFF control system, 
non pattern recognition to the exoskeleton with embedded 
pattern recognition [42] [43]. From the results of the review 
paper, this still shows that there are still a number of possible 
applications of exoskeleton associated with control, safety and 
compensation systems. The development of the exoskeleton is 
still wide open for further research, especially the exoskeleton 
for post-stroke or post-operative therapy needs. In some 
previous studies the subjects tested were generally using 
humans in a healthy or normal condition, in subsequent studies 
it would be better if the trials were carried out in post-stroke 
patients. The exoskeleton is expected to be able to respond and 
follow movements according to human intention so that in 
subsequent studies it is expected to improve the control system 
algorithm so that the exoskeleton can follow the speed and 
acceleration of the user. This can be added gyroscope sensor 
and accelerometer. 
The focus of the area that some previous researchers worked 
on was the development of control systems and the recognition 
of EMG signal patterns. Safety is one thing that is very important 
in every use of instrumentation equipment, especially those 
related to patients directly, so that the development of the 
exoskeleton is expected to be able to ensure patient safety in the 
event of a malfunction. One of the sensors that can be used 
directly for safety purposes is by utilizing EOG 
(electrooculography) signals through electrode leads. So that in 
patients after stroke still have the ability to move the eyeball for 
the purpose of stopping the operation of the exoskeleton, if the 
patient feels uncomfortable. 
EMG signals have very complex characteristics and depend on 
several parameters, changes in these parameters will affect the 
characteristics of the amplitude and frequency. These 
parameters include, position shift, change in distance and 
orientation of the electrode from its original position. Sweat is 
an element consisting of salt which can also affect the resistance 
of the skin, so that it will cause resistance between the 
electrodes to change which can impact the characteristic EMG 
signal amplitude. Long use of exoskeleton can induce patient’s 
tiredness. Some previous researchers reported that fatigue 
would affect EMG signal characteristics. The amplitude will 
increase and the frequency will decrease [44] [45]. These 
parameters are still wide open for exploration on the 
development of the exoskeleton. 
 
CONCLUSION 
EMG signals are bio-electric that are generated by muscles 
when they do muscle contraction. Through spinal cord neural 
system, the brain instructs the limbs to do a motion. EMG 
signals carry a lot of information related to limb movements. 
The use of EMG signals for control purposes is very affective 
because it will reflect human intention. Feature extraction in 
the TD is preferred by some researchers because it is an 
uncomplicated algorithm and less computational time. 
Therefore, in order to control exoskeleton in real time, it can 
work better. EMG signal modeling for estimation of the 
exoskeleton angle can be done by several methods, one method 
that is often used is to use the ANN classifier and Fuzzy NN. 
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Research that can be developed in the future is related to 
natural control, safety and compensation. There are many 
physical parameters on muscle need to address in developing a 
compensation method for instance muscle fatigue, sweat and 
artifact noise. 
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